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Dynamic capacity provisioning is a useful technique for handling the multi-time-scale variations

seen in Internet workloads. In this article, we propose a novel dynamic provisioning technique

for multi-tier Internet applications that employs (1) a flexible queuing model to determine how

much of the resources to allocate to each tier of the application, and (2) a combination of predic-

tive and reactive methods that determine when to provision these resources, both at large and

small time scales. We propose a novel data center architecture based on virtual machine monitors

to reduce provisioning overheads. Our experiments on a forty-machine Xen/Linux-based hosting

platform demonstrate the responsiveness of our technique in handling dynamic workloads. In one

scenario where a flash crowd caused the workload of a three-tier application to double, our tech-

nique was able to double the application capacity within five minutes, thus maintaining response-

time targets. Our technique also reduced the overhead of switching servers across applications

from several minutes to less than a second, while meeting the performance targets of residual

sessions.
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1. INTRODUCTION

1.1 Motivation

An Internet hosting platform is a server farm that runs a distributed application
such as an online retail store or an online brokerage site. Typical Internet
applications employ a multi-tier architecture, with each tier providing a certain
functionality. Such applications tend to see dynamically varying workloads that
contain long-term variations such as time-of-day effects as well as short-term
fluctuations due to flash crowds. Predicting the peak workload of an Internet
application, and capacity provisioning based on these worst case estimates,
is notoriously difficult. There are numerous documented examples of Internet
applications that faced an outage due to an unexpected overload. For instance,
the normally well-provisioned Amazon.com site suffered a forty-minute down-
time due to an overload during the popular holiday season in November 2000
[Amazon 2000].

Given the difficulties in predicting peak Internet workloads, an application
needs to employ a combination of dynamic provisioning and request polic-
ing to handle workload variations. Dynamic provisioning enables additional
resources—such as servers—to be allocated to an application on-the-fly, to han-
dle workload increases, while policing enables the application to temporarily
turn away excess requests while additional resources are being provisioned.

In this article, we focus on dynamic resource provisioning of Internet appli-
cations that employ a multi-tier architecture. We argue that (1) provisioning
of multi-tier applications raises new challenges not addressed by prior work
on provisioning single-tier applications, and (2) agile, proactive provisioning
techniques are necessary to handle both long-term and short-term workload
fluctuations seen by Internet applications. To address these issues, we present
a novel provisioning technique based on a combination of predictive and reac-
tive mechanisms.

1.2 The Case for A New Provisioning Technique

Dynamic provisioning of resources—allocation and deallocation of servers to
replicated applications—has been studied in the context of single-tier applica-
tions, of which clustered HTTP servers are the most common example. The no-
tion of hot spares and their allocation to cluster-based applications on-demand
was first proposed by Fox et al. [1997]. The Muse project proposed a utility-based
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Fig. 1. Strawman approaches for provisioning a multi-tier application.

approach based on an economic theory for allocation and deallocation of servers
to clustered Web servers [Chase and Doyle 2001]. A model-based approach for
resource provisioning in single-tier Web servers was proposed by Doyle et al.
[2003]. Kamra et al. [2004] model a multitier e-commerce application as a single
M/GI/1 server and present a PI-controller-based admission control for maintain-
ing response time targets. Whereas multi-tier Internet applications have been
studied in the context of SEDA [Welsh and Culler 2003; Welsh et al. 2001], the
effort focused on admission control issues to maintain target response times
and did not explicitly consider provisioning issues.

It is nontrivial to extend provisioning mechanisms designed for single-tier
applications to multi-tier scenarios. To understand why, we consider two straw-
man approaches that are simple extensions of the above single-tier methods and
demonstrate their limitations for multi-tier applications.

Since many single-tier provisioning mechanisms have already been pro-
posed, a straightforward extension is to employ such an approach at each tier of
the application. This enables provisioning decisions to be made independently
at each tier, based on local observations. Thus, our first strawman is to provi-
sion additional servers at a tier when the incoming request rate at that tier
exceeds the currently provisioned capacity; this can be inferred by monitoring
queue lengths, tier-specific response times, or request drop rates. We refer to
this approach as independent per-tier provisioning.

Example 1. Consider the three-tier Internet application depicted in
Figure 1(a). Initially, let us assume that one server each is allocated to the
three tiers, and this enables the application to service 15, 10, and 10.5 re-
quests/second at each tier (since a user request may impose different demands
at different tiers, the provisioned capacity at each tier may be different). Let
the incoming request rate be 14 requests/second. Given these capacities, all
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requests are let in through the first tier, and 4 requests/second are dropped at
the second tier. Due to these drops, the third tier sees a reduced request rate
of 10 requests/second and is able to service them all. The effective good-put is
therefore 10 requests/second. Since request drops are only seen at the second
tier, this tier is perceived to be the bottleneck. The provisioning algorithm at
that tier will allocate an additional server, doubling its effective capacity to 20
requests/second. At this point, the first two tiers are able to service all incom-
ing requests and the third tier now sees a request rate of 14 requests/second
(see Figure 1(b)). Since its capacity is only 10.5 requests/second, it drops 3.5
requests/second. Thus, the bottleneck shifts to the third tier, and the effective
good-put only increases from 10 to 10.5 requests/second.

This simple example demonstrates that increasing the number of servers al-
located to the bottleneck tier does not necessarily increase the effective good-put
of the application. Instead, it may merely shift the bottleneck to a downstream
tier. Although the provisioning mechanism at this downstream tier will subse-
quently increase its capacity, such shifting bottlenecks may require a number
of independent provisioning steps at various tiers before the effective applica-
tion capacity is actually increased. In the worst case, upto k provisioning steps,
one at each tier, may be necessary in a k-tier application. Since allocation of
servers to a tier entails overheads of several minutes or more [Chase and Doyle
2001], and since Internet workloads may spike suddenly, independent per-tier
provisioning may be simply too slow to effectively respond to such workload
dynamics.

Our second strawman models the multi-tier application as a black box and
allocates additional servers whenever the observed response time exceeds a
threshold.

Example 2. Consider the three-tier application from Example 1 with tier-
specific capacities of 15, 20, and 10.5 requests/second as depicted in Figure 1(b).
We ignore admission control issues in this example. Since the incoming request
rate is 14 requests/second, the first two tiers are able to serve all requests, while
the third saturates, causing request queues to buildup at this tier. This queue
buildup increases the end-to-end response time of the application beyond the
threshold. Thus, as in the single-tier case, a black box approach can success-
fully detect when additional servers need to be provisioned for the multi-tier
application.

However, determining how many servers to provision, and where, is far more
complex for multi-tier applications. First, since the application is treated as a
black box, the provisioning mechanism can only detect an increase in end-to-end
response times but cannot determine which tier is responsible for this increase.
Second, for single-tier applications, an application model is used to determine
how many servers are necessary to service all incoming requests with a cer-
tain response time threshold [Doyle et al. 2003]. Extending such models to
multi-tier applications is nontrivial, since each tier has different characteris-
tics. In a typical e-commerce application, for instance, this implies collectively
modeling the effects of HTTP servers, Java application servers, and database
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servers—a complex task. Third, not all tiers of the application may be replica-
ble. For instance, the database tier is typically difficult to replicate on-the-fly.
In the previous example, if the third tier is a nonreplicable database, the black
box approach, which has no knowledge of individual tiers, will incorrectly signal
the need to provision additional servers, when the correct action is to trigger
request policing and let no more than 10.5 requests/second into the “black box.”

This example demonstrates that due to the very nature of multi-tier appli-
cations, it is not possible to treat them as a black box for provisioning purposes.
Knowledge of the number of tiers, their current capacities, and constraints on
the degree of replication at each tier is essential for making proper provisioning
decisions.

Both examples expose the limitations of using variants of single-tier provi-
sioning methods for multi-tier applications. This article presents a multi-tier
provisioning technique that overcomes these limitations.

1.3 Research Contributions

This article addresses the problem of dynamically provisioning capacity to a
multi-tier application so that it can service its peak workload demand while
meeting contracted response-time guarantees. The provisioning technique pro-
posed in this article is tier-aware, agile, and able to take any tier-specific repli-
cation constraints into account. Our work has led to the following research
contributions.

Predictive and reactive provisioning: Our provisioning technique employs
two methods that operate at two different time scales—predictive provisioning,
which allocates capacity at the time-scale of hours or days, and reactive provi-
sioning, which operates at time scales of minutes to respond to flash crowds or
deviations from expected long-term behavior. The combination of predictive and
reactive provisioning is a novel approach for dealing with the multi-time-scale
variations in Internet workloads.

Analytical modeling and incorporating tails of workload distributions: We
present a flexible analytical model based on queuing theory to capture the
behavior of applications with an arbitrary number of tiers. Our model deter-
mines the number of servers to be allocated to each tier based on the estimated
workload. A novel aspect of our model-based provisioning is that it is based on
the tail of the workload distribution—since capacity is usually engineered for
the worst-case load, we use tails of probability distributions to estimate peak
demand.

Fast server switching: Agile provisioning in a hosting platform requires the
ability to quickly reallocate servers from one application to another. Doing so
allows overloaded applications to be quickly allocated additional capacity on
underloaded servers. To enable agile provisioning, we propose a novel technique
that exploits the capabilities of virtual machines to significantly reduce server
switching overheads. Our technique enables the system to be extremely agile
to load spikes, with reaction times of tens of milliseconds.

Handling session-based workloads: Modern Internet workloads are predom-
inantly session-based. Consequently, our techniques are inherently designed to
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handle session-based workloads—they can account for multiple requests that
comprise a session and the stateful nature of session-based Internet applica-
tions.

Implementation and experimentation: We implement our techniques on a
forty-machine Linux-based hosting platform and use our prototype to conduct a
detailed experimental evaluation using two open-source multi-tier applications.
Our results show: (1) our model effectively captures key characteristics of multi-
tier applications and overcomes the shortcomings inherent in existing provi-
sioning techniques based on single-tier models, and (2) the combination of pre-
dictive and reactive mechanisms allows us to deal with predictable workload
variations as well as unexpected spikes (during a flash crowd, our data center
could double the capacity of a three-tier application within 5 minutes).

1.4 Relevance of Our Research to Adaptive and Autonomic Computing

The techniques presented in this article can be classified as adaptive or semi-
autonomous, in the sense that they are designed to adapt to changing environ-
mental conditions (the workload) with limited human intervention. While there
are certain aspects of the system that require offline analysis, such as a subset
of the application model parameterization, most other aspects of the system are
completely online and purely observation-based, such as the construction of the
predictive model, as well as reaction to recent workload behavior. Moreover, the
provisioning mechanisms used in our system, such as agile VM-based server
switching, are completely automated, and do not require any human interven-
tion. We believe our work is a step towards a completely “autonomic” system
that can employ more sophisticated learning techniques within the framework
presented in this article to infer application behavior and workload character-
istics on its own.

The remainder of this article is structured as follows. Sections 2 and 3 present
an overview of the proposed system. Sections 4 and 5 present our provisioning
algorithms, while Section 6 presents our fast server switching algorithm. We
present our prototype implementation in 7 and our experimental evaluation in
Section 8. We discuss related work in Section 9 and present our conclusions in
Section 10.

2. SYSTEM OVERVIEW

This section presents an overview of Internet applications and the hosting plat-
form assumed in our work.

2.1 Multi-Tier Internet Applications

Modern Internet applications are designed using multiple tiers. A multi-tier
architecture provides a flexible, modular approach for designing such applica-
tions. Each tier provides a certain functionality, and the various tiers form a
processing pipeline. Each tier receives partially processed requests from the
previous tier and feeds these requests into the next tier, after local processing
(see Figure 2). For example, an online bookstore can be designed using three
tiers—a front-end Web server responsible for HTTP processing, a middle-tier
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Fig. 2. Architecture of a 3-tier Internet application. In this example, tiers 1 and 2 are clustered,

while tier 3 is not.

Java application server that implements the application logic, and a back-end
database that stores catalogs and user orders.

The various tiers of an application are assumed to be distributed across
different servers. Depending on the desired capacity, a tier may also be clus-
tered. In an online bookstore, for example, the front-end tier can be a clustered
Apache server that runs on multiple machines. If a tier is both clustered and
replicable on-demand, it is assumed that the number of servers allocated to
it, and thus the provisioned capacity, can be varied dynamically. Not all tiers
may be replicable. For instance, if the back-end tier of the bookstore employs a
database with shared-nothing architecture, it cannot be replicated on-demand.
Database servers with a shared-everything architecture [oracle9i 2005], in con-
trast, can be clustered and replicated on-demand, but with certain constraints.
We assume that each tier specifies its degree of replication, which is the limit
on the maximum number of servers that can be allocated to it.1

Each clustered tier is also assumed to employ a load balancing element that
is responsible for distributing requests to servers in that tier [Pai et al. 1998].
The workload of an Internet application is assumed to be session-based, where
a session consists of a succession of requests issued by a client with think times
in between. If a session is stateful, successive requests will need to be serviced
by the same server at each tier, and the load balancing element will need to
account for this server state when redirecting requests.

Every application also runs a special component called a sentry. The sentry
polices incoming sessions to an application’s server pool—incoming sessions
are subjected to admission control at the sentry to ensure that the contracted
performance guarantees are met; excess sessions are turned away during over-
loads (see Figure 2). Observe that, unlike systems that use per-tier admission
control [Welsh and Culler 2003], we assume a policer that makes a one-time
admission decision when a session arrives. Once a session has been admitted,
none of its requests can be dropped at any intermediate tier. Thus, sufficient
capacity needs to be provisioned at various tiers to service all admitted ses-
sions. Such a one-time policer avoids resource wastage resulting from partially
serviced requests that may be dropped at later tiers.

1The degree of replication of a tier can vary from one to infinity, depending on whether the tier is

partially, infinitely, or not, replicable.
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Fig. 3. Hosting platform architecture.

Finally, we assume that each application desires a performance bound from
the hosting platform that is specified in the form of a service-level agreement
(SLA). Our work assumes that the SLA is specified either in terms of the average
response time or a suitable high percentile of the response time distribution
(e.g., a SLA may specify that 95% of the requests should incur an end-to-end
response time of no more than 1 second).

2.2 Hosting Platform Architecture

Our hosting platform is a data center that consists of a cluster of commodity
servers interconnected by gigabit Ethernet. One or more high bandwidth links
connect this cluster to the Internet. Each server in the hosting platform can take
on one of the following roles: run an application component, run the control
plane, or be part of the free pool (see Figure 3). The free pool contains all
unallocated servers.

Servers Hosting Application Components: The hosting platform runs mul-
tiple third-party applications concurrently, in return for revenues [Chase and
Doyle 2001; Shen et al. 2002; Urgaonkar et al. 2002]. This work assumes a ded-
icated hosting model, where each application runs on a subset of the servers
and a server is allocated to at most one application at any given time.2 The
dedicated model is useful for running large clustered applications such as on-
line mail [Saito et al. 1999], retail and brokerage sites, where server sharing
is infeasible due to the client workload—the server pool is partitioned among
applications running on the platform.

The component of an application that runs on a server is referred to as a
capsule. Each server also runs a nucleus—a software component that performs
online measurements of the capsule workload, its performance and resource
usage; these statistics are periodically conveyed to the control plane.

Control Plane: The control plane is responsible for dynamic provisioning of
servers to individual applications. It tracks the resource usage on servers, as

2A dedicated hosting model is different from shared hosting [Urgaonkar et al. 2002], where the

number of applications exceeds the number of servers, and each server may run multiple applica-

tions concurrently.
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reported by the nuclei, and determines the number of servers to be allocated to
each application.

3. PROVISIONING ALGORITHM OVERVIEW

The goal of our provisioning algorithm is to allocate sufficient capacity to the
tiers of an application so that its SLA can be met even in the presence of the peak
workload. At the heart of any provisioning algorithm lies two issues: how much
to provision, and when? We provide an overview of our provisioning algorithm
from this perspective.

How much to provision. To address the issue of how many servers to allo-
cate to each tier and each application, we construct an analytical model of an
Internet application. Our model takes as input the incoming request rate and
service demand of an individual request, and computes the number of servers
needed at each tier to handle the aggregate demand.

We model a multi-tier application as a network of queues where each queue
represents an application tier (more precisely, a server at an application tier),
and the queues from a tier feed into the next tier. We model a server at a tier
as a G/G/1 system, since it is sufficiently general to capture arbitrary arrival
distributions and service time distributions.

By using this building block, which we describe in Section 4, we determine
the number of servers necessary at each tier to handle a peak session arrival
rate of λ, and provision resources accordingly. Our approach overcomes the
drawbacks of independent per-tier provisioning and the black box approaches:
(1) While the capacity needed at each tier is determined separately using our
queuing model, the desired capacities are allocated to the various tiers all at
once. This ensures that each provisioning decision immediately results in an
increase in effective capacity of the application. (2) The use of a G/G/1 building
block for a server at each tier enables us to break down the complex task of
modeling an arbitrary multitier application into more manageable units. Our
approach retains the ability to model each tier separately, while being able to
reason about the needs of the application as a whole.

When to Provision. The decision of when to provision depends on the dy-
namics of Internet workloads. Internet workloads exhibit long-term variations
such as time-of-day or seasonal effects, as well as short-term fluctuations such
as flash crowds. While long-term variations can be predicted by observing past
variations, short-term fluctuations are less predictable, or in some cases, not at
all predictable. Our techniques employ two different methods to handle vari-
ations observed at different time scales. We use predictive provisioning to es-
timate the workload for the next few hours and provision for it accordingly.
Reactive provisioning is used to correct errors in the long-term predictions or to
react to unanticipated flash crowds. Whereas predictive provisioning attempts
to stay ahead of the anticipated workload fluctuations, reactive provisioning
enables the hosting platform to be agile to deviations from the expected work-
load.

The following sections present our queuing model, and the predictive and
reactive provisioning methods.
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4. HOW MUCH TO PROVISION: MODELING MULTI-TIER APPLICATIONS

To determine how many servers to provision for an application, we present an
analytical model of a multi-tier application. Consider an application that con-
sists of k tiers, denoted by T1, T2, . . . Tk . Let the desired end-to-end response
time for the application be R; this value is specified by the application’s con-
tracted SLA. Assume that the end-to-end response time is broken down into
per-tier response times,3 denoted by d1, d2, . . . , dk , such that

∑
di = R. Let

the incoming session rate be λ. Since capacity is typically provisioned based on
the worst-case demand, we assume that λ is some high percentile of the arrival
rate distribution—an estimate of the peak session rate that will be seen by the
application.

Given the peak session rate and per-tier response times, our objective is
to determine how many servers to allocate such that each tier can service all
incoming requests with a mean response time of di.

Our model is based on a network of queues. Each server allocated to the
application is represented by a queue (see Figure 2). Queues (servers) repre-
senting one tier feed into those representing the next tier. The first step in
solving our model is to determine the capacity of an individual server in terms
of the request rate it can handle. Given the capacity of a server, the next step
computes the number of servers required at a tier to service the peak session
rate. We model each server as a G/G/1 queuing system. In a G/G/1 queuing
system, requests arrive at a server such that their interarrival times are de-
rived from a fixed, known distribution. Each request brings with it a certain
amount of work for the server to do. The time it takes the server to finish this
work for a request, when serving only that request, is called the service time
of the request. In a G/G/1 system, service times are assumed to be drawn from
a known, fixed distribution. Requests are serviced in a first-come-first-served
(FCFS) order. The queue is assumed to be infinitely long, meaning any request
that arrives when the server is busy waits in the queue behind all the requests
that arrived before it and have not yet been serviced. Finally, the servicing of
requests is nonpreemptive. A G/G/1 system can express useful system metrics
like average request response time and throughput, in terms of the interarrival
and service time distributions. Since a G/G/1 system can handle an arbitrary
arrival distribution and arbitrary service times, it enables us to capture the
behavior of a various tiers such as HTTP, J2EE, and database servers.

The behavior of a G/G/1 system can be captured using the following queuing
theory result [Kleinrock 1976]:

λi ≥
[

si + σ 2
a + σ 2

b

2 · (di − si)

]−1

, (1)

where di is the mean response time for tier i, si is the average service time for
a request at that tier, and λi is the request arrival rate to tier i. σ 2

a and σ 2
b are

the variance of interarrival time and the variance of service time, respectively.

3Offline profiling can be used to break down the end-to-end response time into tier-specific response

times.
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Observe that di is known, while the per-tier service time si as well as the
variance of interarrival and service times σ 2

a and σ 2
b , can be monitored online

in our system. By substituting these values into Equation 1, a lower bound on
request rate λi that can serviced by a single server, can be obtained.

Given an average session think-time of Z , a session issues requests at a
rate of 1

Z . Using Little’s Law [Kleinrock 1976], we can translate the session
arrival rate of λ to a request arrival rate of λτ

Z , where τ is the average session
duration. Therefore, once the capacity of a single server λi has been computed,
the number of servers ηi needed at tier i to service a peak request rate of λτ

Z is
simply computed as

ηi =
⌈

βiλτ

λi Z

⌉
, (2)

where βi is a tier-specific constant. The quantities Z and τ are estimated us-
ing online measurements. Note that implicit in the above calculation, is the
assumption of perfect load-balancing among the servers comprising a tier. In
complementary research some of the coauthors have explored enhancements
to the model to incorporate the presence of load imbalances [Urgaonkar et al.
2005].

Observe that a single incoming request might trigger more than one request
(unit of work) at intermediate tiers. For instance, a single search request at
an online superstore might trigger multiple queries at the back-end database,
one in the book catalog, one in the music catalog, and so on. Consequently, our
model assumes that λτ

Z incoming requests imposes an aggregate demand of β1
λτ
Z

requests at tier 1, β2
λτ
Z requests at tier 2, and so on. The parameters β1, . . . βk

are derived using online measurements. The value of βi may be greater than
one if a request triggers multiple units of work at tier i, or it may be less than
one if caching at prior tiers reduces the demand at this tier.

An additional enhancement to our model is to incorporate any limits that
capsules may have on the number of requests they can service simultaneously
(e.g. the Apache Web server has a configurable upper limit on the number of
processes that it can spawn to handle requests). This simply involves setting the
capacity of a server to be the minimum of the capacity given by our model (ex-
pressed as the average number of requests that it can process simultaneously)
and any concurrency limit that the capsule hosted on it may have.

Observe that our model can handle applications with an arbitrary number
of tiers, since the complex task of modeling a multitier application is reduced to
modeling an individual server at each tier. Equation 2 assumes that servers are
homogeneous and that servers in each tier are load-balanced. Both assumptions
can be relaxed as we show in a complementary paper [Urgaonkar et al. 2005].

The output of the model is the number of servers η1, . . . ηk needed at the k
tiers to handle a peak demand of λ. We then increase the capacity of all tiers
to these values in a single step, resulting in an immediate increase in effective
capacity. In the event ηi exceeds the degree of replication Mi of a tier, the actual
allocation is reduced to this limit. Thus, each tier is allocated no more than
min(ηi, Mi) servers. To ensure that the SLA is not violated when the allocation
is reduced to Mi, the excess requests must be turned away at the sentry.
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5. WHEN TO PROVISION?

In this section, we present two methods—predictive and reactive—to provision
resources over long and short time-scales, respectively.

5.1 Predictive Provisioning for the Long Term

The goal of predictive provisioning is to provision resources over time-scales of
hours and days. The technique uses a workload predictor to predict the peak
demand over the next several hours or a day, and then uses the model pre-
sented in Section 4 to determine the number of servers that are needed to meet
this peak demand. Predictive provisioning is motivated by long-term varia-
tions such as time-of-day or seasonal effects exhibited by Internet workloads
[Hellerstein et al. 1999]. For instance, the workload seen by an Internet appli-
cation typically peaks around noon every day and is minimum in the middle
of the night. Similarly, the workload seen by online retail Web sites is higher
during the holiday shopping months of November and December than other
months of the year. These cyclic patterns tend to repeat and can be predicted
ahead of time by observing past variations. By employing a workload predic-
tor that can predict these variations, our predictive provisioning technique can
allocate servers to an application well ahead of the expected workload peak.
This ensures that application performance does not suffer even under the peak
demand.

The key to predictive provisioning is the workload predictor. In this section,
we present a workload predictor that estimates the tail of the arrival rate dis-
tribution (the peak demand) for the next few hours. Other statistical workload
predictive techniques proposed in the literature can also be used with our pre-
dictive provisioning technique [Hellerstein et al. 1999; Rolia et al. 2002].

Our workload predictor is based on a technique proposed by Rolia et al.
[2002] and uses past observations of the workload to predict peak demand that
will be seen over a period of T time units. For simplicity of exposition, assume
that T = 1 hour. In that case, the predictor estimates the peak demand that
will be seen over the next one hour, at the beginning of each hour. To do so, it
maintains a history of the session arrival rate seen during each hour of the day
over the past several days. A histogram is then generated for each hour using
observations for that hour from the past several days (see Figure 4). Each his-
togram yields a probability distribution of the arrival rate for that hour. The
peak workload for a particular hour is estimated as a high percentile of the ar-
rival rate distribution for that hour (see Figure 4). Thus, by using the tail of the
arrival rate distribution to predict peak demand, the predictive provisioning
technique can allocate sufficient capacity to handle the worst-case load, should
it arrive. Further, monitoring the demand for each hour of the day enables the
predictor to capture time-of-day effects. Since workloads of Internet applica-
tions exhibit occasional overloads, the peak values of their resource needs often
far exceed the resources that they need most of the time. Using an appropriate
high percentile of the resource need distribution allows our system to prevent
the wastage of resources that would result from provisioning based on the peak
values. The reactive component of our scheme, described in the next section, is
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Fig. 4. The workload prediction algorithm.

designed to add capacity during such overloads when the provisioned capacity
falls short of the application needs.

In addition to using observations from prior days, the workload seen in the
past few hours of the current day can be used to further improve prediction
accuracy. Suppose that λpred(t) denotes the predicted arrival rate during a par-
ticular hour denoted by t. Further let λobs(t) denote the actual arrival rate seen
during this hour. The prediction error is simply λobs(t) − λpred(t). In the event
of a consistently positive prediction error over the past few hours, indicating
that the predictor is consistently underestimating peak demand, the predicted
value for the next hour is corrected using the observed error:

λpred(t) = λpred(t) +
t−1∑

i=t−h

max(0, λobs(i) − λpred(i))
h

,

where the second expression denotes the mean prediction error over the past h
hours. We only consider positive errors in order to correct underestimates of the
predicted peak demand—negative errors indicate that the observed workload
is less than the peak demand, which only means that the worst-case workload
did not arrive in that hour and is not necessarily a prediction error.

Using the predicted peak arrival rate for each application, the predictive
provisioning technique uses the model to determine the number of servers that
should be allocated to each tier of an application. An increase in allocation must
be met by borrowing servers from the free pool, or underloaded applications—
underloaded applications are those whose new allocations are less than their
current allocations. If the total number of required servers is less than the
servers available in the free pool and those released by underloaded applica-
tions, then a utility-based approach [Chase and Doyle 2001] can be used to
arbitrate the allocation of available servers to needy applications—servers are
allocated to applications that benefit most from it as defined by their utility
functions.
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5.2 Reactive Provisioning: Handling Prediction Errors and Flash Crowds

The workload predictor outlined in the previous section is not perfect—it may
incur prediction errors if the workload on a given day deviates from its behavior
on previous days. Further, sudden load spikes or flash crowds are inherently
unpredictable phenomena. Finally, errors in the online measurements of the
model parameters can translate into errors in the allocations computed by
the model. Reactive provisioning is used to swiftly react to such unforeseen
events. Reactive provisioning operates on short time scales—on the order of
minutes—checking for workload anomalies. If any such anomalies are detected,
then it allocates additional capacity to various tiers to handle the workload
increase.

Reactive provisioning is invoked once every few minutes. It can also be in-
voked on-demand by the application sentry if the observed request drop rate
increases beyond a threshold. In either case, it compares the currently ob-
served session arrival rate λobs(t) over the past few minutes, to the predicted
rate λpred (t). If the two differ by more than a threshold, corrective action

is necessary. Specifically if λobs(t)
λpred (t)

> τ1 or drop rate > τ2, where τ1 and τ2 are

application-defined thresholds, then it computes a new allocation of servers.
This can be achieved in one of two ways. One approach is to use the observed
arrival rate λobs(t) in Equation 2 of the model to compute a new allocation
of servers for the various tiers. The second approach is to increase the allo-
cation of all tiers that are at or near saturation by a constant amount (e.g.,
10%). The new allocation needs to ensure that the bottleneck does not shift to
another downstream tier; the capacity of any such tiers may also need to be
increased proportionately. The advantage of using the model to compute the
new allocation is that it yields the new capacity in a single step, as opposed to
the latter approach that increases capacity by a fixed amount. The advantage
of the latter approach is that it is independent of the model and can handle
any errors in the measurements used to parameterize the model. In either
case, the effective capacity of the application is raised to handle the increased
workload.

The additional servers are borrowed from the free pool if available. If the
free pool is empty or has insufficient servers, then these servers need to be
borrowed from other underloaded applications running on the hosting platform.
An application is said to be underloaded if its observed workload is significantly
lower than its provisioned capacity: if λobs(t)

λpred (t)
< τlow, where τlow is a low water-

mark threshold.
Since a single invocation of reactive provisioning may be insufficient to bring

sufficient capacity online during a large load spike, repeated invocations may
be necessary in quick succession to handle the workload increase.

Together, predictive and reactive provisioning can handle long-term pre-
dictable workload variations as well as short term fluctuations that are less
predictable. Predictive provisioning allocates capacity ahead of time in an-
ticipation of a certain peak workload, while reactive provisioning takes cor-
rective action after an anomalous workload increase has been observed. Put
another way, predictive provisioning attempts to stay ahead of the workload
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Fig. 5. The Xen VMM hosting multiple VMs.

fluctuations, while reactive provisioning follows workload fluctuations, correct-
ing for errors.

5.3 Request Policing

The predictor and reactor convey the peak session arrival rate for which they
have allocated capacity to the application’s sentry. This is done every time the
allocation is changed. The sentry then ensures that the admission rate does
not exceed this threshold—excess sessions are dropped at the sentry. Note that
in our system, admission control decisions are made only in front of the first
tier of the application. Once admitted, a request is not explicitly dropped at
a subsequent tier within the application. This is in contrast to some related
work [Welsh and Culler 2003], where each tier employs its own admission con-
trol. Dropping a request beyond the first tier results in wastage of resources at
all the tiers that processed it. Any system with per-tier admission control can
be converted into one where only the first tier performs admission control. By
modeling all the tiers and their interactions, our multi-tier model allows us to
integrate admission control decisions for various tiers into a single sentry.

6. AGILE SERVER SWITCHING USING VMMS

A Virtual Machine Monitor (VMM) is a software layer that virtualizes the re-
sources of a physical server and supports the execution of multiple virtual ma-
chines (VMs) [Goldberg 1974]. Each VM runs a separate operating system and
an application capsule within it. The VMM enables server resources, such as
the CPU, memory, disk and network bandwidth, to be partitioned among the
resident virtual machines. Figure 5 shows a hypothetical Xen VMM [Barham
et al. 2003] hosting VMs running two different operating systems.

Traditionally VMMs have been employed in shared hosting environments to
run multiple applications and their VMs on a single server; the VM provides
isolation across applications while the VMM supports flexible partitioning of
server resources across applications. In dedicated hosting, no more than one
application can be active on a given physical server, and as a result, sharing of
individual server resources across applications is moot in such environments.
Instead, we employ VMMs for a novel purpose—fast server switching.

Traditionally, switching a server from one application to another for purposes
of dynamic provisioning has entailed overheads of several minutes or more.
Doing so involves some or all of the following steps: (1) wait for residual sessions
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of the current application to terminate, (2) terminate the current application,
(3) scrub and reformat the disk to wipe out sensitive data, (4) reinstall the OS,
(5) install and configure the new application. Our hosting platform runs a VMM
on each physical server. Doing so enables it to eliminate many of these steps
and drastically reduces switching time.

6.1 Techniques for Agile Server Switching

We assume that each Elf server runs multiple virtual machines and capsules
of different applications within it. Only one capsule and its virtual machine is
active at any time—this is the capsule to which the server is currently allo-
cated. Other virtual machines are dormant—they are allocated minimal server
resources by the underlying VMM and most server resources are allocated to
the active VM. If the server belongs to the free pool, all of its resident VMs are
dormant.

In such a scenario, switching an Elf server from one application to another
implies deactivating a VM by reducing its resource allocation to ε, and reac-
tivating a dormant VM by increasing its allocation to (100-ε)% of the server
resources.4 This only involves adjusting the allocations in the underlying VMM
and incurs overheads on the order of tens of milliseconds. Thus, in theory, our
hosting platform can switch a server from one application to another in a few
milliseconds. In practice, however, we need to consider the residual state of
the application before it can be made dormant. Figure 6 illustrates the process
of activating a dormant VM hosting a replica of tier-2 of a hypothetical 3-tier
application.

To do so, we assume that once the predictor or the reactor decide to reas-
sign a server from an underloaded to an overloaded application, they notify the
load balancing element of the under-loaded application tier. The load balanc-
ing element stops forwarding new sessions to this server. However, the server
retains existing sessions and new requests may arrive for those sessions until
they terminate. Consequently, the underloaded application tier will continue
to use some server resources and the amount of resources required will dimin-
ish over time as existing sessions terminate. As a result, the allocation of the
currently active VM cannot be instantaneously ramped down; instead the allo-
cation needs to be reduced gradually, while increasing the allocation of the VM
belonging to the overloaded application. Two strategies for ramping down the
allocation of the current VM are possible.

—Fixed rate ramp-down: In this approach, the resource allocation of the under-
loaded VM is reduced by a fixed amount δ every t time units until it reduces to
ε; the allocation of the new VM is increased correspondingly. The advantage
of this approach is that it switches the server from one application to another
in a fixed amount of time, namely t/δ. The limitation is that long-lived resid-
ual sessions will be forced to terminate, or their performance guarantees will
be violated if the allocation decreases beyond that necessary to service them.

4ε is a small value such that the VM consumes negligible server resources and its capsule is idle

and swapped out to disk.
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Fig. 6. Illustration of agile server switching. A 3-tier application is shown here. Each tier actively

uses one server in the first configuration. Due to increased resource needs for tier-2, its dormant

replica is activated by increasing its resource allocations.

—Measurement-based ramp-down: In this approach, the actual resource usage
of the underloaded VM is monitored online. As the resource usage decreases
with terminating sessions, the underlying allocation in the VMM is also re-
duced. This approach requires monitoring of the CPU, memory, network, and
disk usage so that the allocation can match the falling usage. The advantage
of this approach is that the ramp-down is more conservative and less likely
to violate performance guarantees of existing sessions. The drawback is that
long-lived sessions may continue to use server resources, which increases the
server switching time.

In either case, use of VMMs enables our hosting platform to reduce system
switching overheads. The switching time is solely dominated by application
idiosyncrasies. If the application has short-lived sessions or the application
tier is stateless, the switching overhead is small. Even when sessions are long-
lived, the overloaded application immediately gets some resources on the server,
which increases its effective capacity; more resources become available as the
current VM ramps down.
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As a final detail, observe that we have assumed that sufficient dormant VMs
are always available for various tiers of an overloaded application to arbitrarily
increase its capacity. The hosting platform needs to ensure that there is always
a prespawned pool of dormant VMs for each application in the system. As dor-
mant VMs of an application are activated during an overload, and the number
of dormant VMs falls below a low limit, additional dormant VMs need to be
spawned on other Elf servers, so that there is always a ready pool of VMs that
can be tapped.

6.2 Do VMMs Render Predictive Provisioning Unnecessary?

Given the agile switching of servers enabled by the use of VMMs, it is tempting
to argue in favor of a purely reactive provisioning mechanism: such a provi-
sioning mechanism might be able to match the server allocations for various
applications with their workloads by quickly moving servers where they are
needed. However, such a purely reactive scheme has the following shortcom-
ings:

(1) The agility of reactive provisioning is crucially dependent on when it is
conducted. For example, in our system, adding a replica to a tier to deal
with an increased workload may involve transferring a large image over
the network to activate a dormant VM. This transfer time would depend
on the network utilization—the higher the network utilization, the higher
the transfer time. Predictive mechanisms can identify the most opportune
times for conducting such transfers, thereby assisting in fast reactive pro-
visioning. We will demonstrate this phenomenon using an experiment in
Section 8.3.2.

(2) Due to the presence of residual sessions on a server being moved from one
application (call it lender) to another (call it borrower), it may take up to
several minutes for the server to become fully available to borrower. There-
fore, despite using VMMs, a reactive provisioning scheme may not yield the
best possible switching times. The situation worsens if most servers in the
hosting platform are being utilized (because this increases the probability
of a server having residual sessions when the reactor decides to move it
from one application to another). Additionally, long-lasting and resource-
intensive sessions will further exacerbate this problem. With a predictor in
addition to the reactor, the provisioning algorithm can start moving servers
with residual sessions, and stop admitting new sessions of lender, well in
time for the server to be available to borrower when it needs it.

(3) If the workload of an application changes quickly, the actions of a purely
reactive provisioning mechanism may lag the workload. In such cases, the
application may experience degraded performance untill the reactor has
pulled in enough servers to meet the application’s needs.

7. IMPLEMENTATION CONSIDERATIONS

We implemented a prototype data center on a cluster of 40 Pentium servers con-
nected via a 1 Gbps Ethernet switch and running Linux 2.4.20. Each machine
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in the cluster ran one of the following entities: (1) an application capsule and its
nucleus, or load balancer, (2) the control plane, (3) a sentry, (4) a workload gen-
erator for an application. The applications used in our evaluation (described in
detail in Section 8.1) had two replicable tiers—front tier based on the Apache
Web server and a middle tier based on Java servlets hosted on the Tomcat
servlets container. The third tier was a nonreplicable Mysql database server.

Virtual Machine Monitor. We use Xen 1.2 [Barham et al. 2003] as the virtual
machine monitor in our prototype. The Xen VMM has a special virtual machine
called domain0 (virtual machines are called domains in the Xen terminology)
that gets created as soon as Xen boots and remains throughout the VMM’s ex-
istence. Xen provides a management interface that can be manipulated from
domain0 to create new domains, control their CPU, network, and memory re-
source allocations, allocate IP addresses, grant access to disk partitions, and
suspend/resume domains to files, and so forth. The management interface is im-
plemented as a set of library functions implemented in C, for which there are
Python language bindings. We use a subset of this interface—xc dom create.py
and xc dom control.py to provide ways to start a new domain or stop an exist-
ing one; the control plane implements a script that remotely logs on to domain0
and invokes these scripts. The control plane also implements scripts that can
remotely log onto any existing domain to start a capsule and its nucleus or
stop them. xc dom control.py provides an option that can be used to set the
CPU share of an existing domain. The control plane uses this feature for VM
ramp-up and ramp-down.

Nucleus. The nucleus was implemented as a user-space daemon that pe-
riodically (once every 15 minutes in our prototype) extracts information about
tier-specific requests needed by the provisioning algorithms and conveys it to
the control plane. Our nuclei use a combination of (1) online measurements of
resource usages and request performance, (2) real-time processing of logs pro-
vided by the application software components, and (3) offline measurements to
determine various quantities needed by the control plane. To enable low over-
head recording of online measurements, the logs are written to named pipes
that are read by the nuclei. We made simple modifications to Apache and Tom-
cat to record the average service time, si, of a request at these tiers. For Mysql,
si was determined using offline profiling [Urgaonkar et al. 2002]. The variance
of service time, σ 2

b , was determined from observations of individual service
times. We configured Apache and Tomcat by turning on the appropriate op-
tions in their configuration files, to have them record the arrival and residence
times of individual requests into their logs. The logs were written to named
pipes and processed in real-time by the nuclei to determine, σ 2

a , the variance
of the request interarrival time. The parameter βi for tier i was estimated by
the control plane as the ratio of the number of requests reported by the nu-
clei at that tier and the number of requests admitted by the sentry during the
last period. Finally, the nuclei used the sysstat package [SAR 2005] for online
measurements of resource usages of capsules used by the reactive provisioning
and by the measurement-based strategy for ramping down the allocation of
a VM.
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Sentry and Load Balancer. We used Kernel TCP Virtual Server (ktcpvs) ver-
sion 0.0.14 [KTCPVS 2005] to implement the policing mechanisms described in
Section 5.3. ktcpvs is an open-source, layer-7 request dispatcher implemented
as a Linux module. A round-robin load balancer implemented in ktcpvs was
used for Apache. Load balancing for the Tomcat tier was performed by mod jk,
an Apache module that implements a variant of round robin request distri-
bution while taking into account session affinity. The sentry keeps records of
arrival and finish times of admitted sessions as well as each request within a
session. These observations are used to estimate the average session duration
τ and the average think time Z .

Control Plane. The control plane is implemented as a daemon running on
a dedicated machine. It implements the predictive and reactive provisioning
techniques described in Section 5. The control plane invokes the predictive
provisioning algorithm periodically and conveys the new server allocations or
deallocations to the affected sentries and load balancers. It communicates with
the concerned virtual machine monitors to start or stop capsules and nuclei.
Reactive provisioning is invoked by the sentries once every 5 minutes.

8. EXPERIMENTAL EVALUATION

In this section we present the experimental setup followed by the results of our
experimental evaluation.

8.1 Experimental Setup

The control plane was run on a dual-processor 450 MHz machine with 1 GB
RAM. Elf and Ent servers had 2.8 GHz processors and 512 MB RAM. The
sentries were run on dual-processor 1GHz machines with 1 GB RAM. Fi-
nally, the workload generators were run on uniprocessor machines with 1
GHz processors. Elves and Ents ran the Xen 1.2 VMM with Linux; all other
machines ran Linux 2.4.20. All machines were interconnected by gigabit
Ethernet.

We used two open-source multi-tier applications in our experimental study.
Rubis implements the core functionality of an eBay-like auction site: selling,
browsing, and bidding. It implements three types of user sessions, has nine
tables in the database and defines 26 interactions that can be accessed from
the clients’ Web browsers. Rubbos is a bulletin-board application modeled after
an online news forum like Slashdot. Users have two different levels of access:
regular user and moderator. The main tables in the database are the users, sto-
ries, comments, and submissions tables. Rubbos provides 24 Web interactions.
Both applications were developed by the DynaServer group at Rice Univer-
sity [DYNASERVER 2005]. Each application contains a Java-based client that
generates a session-oriented workload. We modified these clients to generate
workloads and take measurements needed by our experiments. Rubis and Rub-
bos sessions had an average duration of 15 minutes and 5 minutes, respectively.
For both applications, the average think time was 5 seconds.

We used 3-tier versions of these applications. The front tier was based on
the Apache 2.0.48 Web server. The middle tier was based on Java servlets that
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Table I. Per-Tier Workload Characteristics for Rubis

Parameter Apache Tomcat Mysql

di 80 msec 400 msec 320 msec

si 20 msec 294 msec 254 msec

σ 2
a 848 2304 1876

σ 2
b 0 3428 4024

Degree of replication inf inf 1

Concurrency limit per replica 256 256 2000

Table II. Per-Tier Workload Characteristics for Rubbos

Parameter Apache Tomcat Mysql

di 80 msec 400 msec 320 msec

si 20 msec 320 msec 278 msec

σ 2
a 656 2018 1486

σ 2
b 0 4324 2564

Degree of replication inf inf 1

Concurrency limit per replica 256 256 2000

Table III. Session Characteristics

for Rubis and Rubbos

Parameter Rubis Rubbos

Z 5 sec 5 sec

τ 15 min 5 min

implement the application logic. We employed Tomcat 4.1.29 as the servlets
container. Finally, the database tier was based on the Mysql 4.0.18 database.

Both applications are assumed to require an SLA where the 95th percentile
of the response time is no greater than 2 seconds. We use a simple heuristic to
translate this SLA into an equivalent SLA specified using the average response
time—since the model in Section 4 uses mean response times, such a translation
is necessary. We use application profiling [Urgaonkar et al. 2002] to determine
a distribution whose 95th percentile is 2 seconds and use the mean of that
distribution for the new SLA. The per-tier average delay targets d1, d2, and d3

were then set to be 10, 50, and 40% of the mean response time, for Apache,
Tomcat, and Mysql respectively.

We present the values for various parameters used by our multi-tier models
for our applications, in Tables I and II. Since these values are either, (1) updated
once every 15 minutes based on online measurements for Apache and Tomcat
tiers or, (2) recorded over 15 minute periods based on offline measurements for
Mysql, for each parameter, we sort the observed values in an increasing order
and report the 95th percentile.

Finally, we present the parameters of our model that capture session char-
acteristics for these applications in Table III.

8.2 Effectiveness of Multi-Tier Model

This section demonstrates the effectiveness of our multi-tier provisioning tech-
nique over variants of single-tier methods.
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Fig. 7. Rubbos: Independent per-tier provisioning.

8.2.1 Independent Per-Tier Provisioning. Our first experiment uses the
Rubbos application. We use the first strawman described in Example 1 of
Section 1 for provisioning Rubbos. Here, each tier employs its own provision-
ing technique. Rubbos was subjected to a workload that increases in steps,
once every ten minutes (see Figure 7(a)). The first workload increase oc-
curs at t = 600 seconds and saturates the tier-1 Web server. This triggers
the provisioning technique, and an additional server is allocated at t = 900
seconds (see Figure 7(b)). At this point, the two tier-1 servers are able to
service all incoming requests, causing the bottleneck to shift to the Tomcat
tier. The Elf running Tomcat saturates, which triggers provisioning at tier
2. An additional server is allocated to tier 2 at t = 1200 seconds (see Fig-
ure 7(b)). The second workload increase occurs at t = 1200 seconds and the
cycle repeats. As shown in Figure 7(c), since multiple provisioning steps are
needed to yield an effective increase in capacity, the application SLA is vi-
olated during this period. Finally, Figure 7(d) presents the CPU utilization
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Fig. 8. Rubbos: Provision only the Tomcat tier.

of the server hosting the initial Tomcat replica throughout the experiment.
As seen, the response time spikes correspond to the CPU getting saturated
and subside when the addition of a new replica helps reduce the stress on the
CPU.

A second strawman is to employ dynamic provisioning only at the most
compute-intensive tier of the application, since it is the most common bottleneck
[Villela et al. 2004]. In Rubbos, the Tomcat tier is the most compute intensive
of the three tiers and we only subject this tier to dynamic provisioning. The
Apache and Tomcat tiers were initially assigned 1 and 2 servers respectively.
The capacity of a Tomcat server was determined to be 40 simultaneous ses-
sions using our model, while Apache was configured with a connection limit
of 256 sessions. As shown in Figure 8(a), every time the current capacity of
the Tomcat tier is saturated by the increasing workload, two additional servers
are allocated. The number of servers at tier 2 increases from 2 to 8 over a pe-
riod of time. At t = 1800 seconds,the session arrival rate increases beyond
the capacity of the first tier, causing the Apache server to reach its connec-
tion limit of 256. Subsequently, even though plenty of capacity was avail-
able at the Tomcat tier, newly arriving sessions are turned away due to
the connection bottleneck at Apache, and the throughput reaches a plateau
(see Figure 8(b)). Thus, focusing only on the the commonly bottlenecked
tier is not adequate, since the bottleneck will eventually shift to other
tiers.

Next, we repeat this experiment with our multi-tier provisioning technique.
Since our technique is aware of the demands at each tier and can take idiosyn-
crasies such as connection limits into account, as shown in Figure 9(a), it is
able to scale the capacity of both the Web and the Tomcat tiers with increasing
workloads. Consequently, as shown in Figure 9(b), the application throughput
continues to increase with the increasing workload. Figure 9(c) shows that the
SLA is maintained throughout the experiment.

Result: Existing single-tier methods are inadequate for provisioning re-
sources for multi-tier applications as they may fail to capture multiple bottle-
necks. Our technique anticipates shifting bottlenecks due to capacity addition
at a tier and increases capacity at all needy tiers. Further, it can identify dif-
ferent bottleneck resources at different tiers, for example, CPU at the Tomcat
tier and Apache connections at the Web tier.
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Fig. 9. Rubbos: Model-based multi-tier provisioning.

8.2.2 The Black Box Approach. We subjected the Rubis application to a
workload that increased in steps, as shown in Figure 11(a). First, we use the
black box provisioning approach described in Example 2 of Section 1. The pro-
visioning technique monitors the per-request response times over 30s intervals
and signals a capacity increase if the 95th percentile response time exceeds
2 seconds. Since the black box technique is unaware of the individual tiers, we
assume that two Tomcat servers and one Apache server are added to the ap-
plication every time a capacity increase is signaled. As shown in Figures 10(a)
and (c), the provisioned capacity keeps increasing with increasing workload,
and whenever the 95th percentile of response time is over 2 seconds. However,
as shown in Figure 10(d), at t = 1100 seconds, the CPU on the Ent running
the database, saturates. Since the database server is not replicable, increasing
the capacity of the other two tiers beyond this point does not yield any further
increase in effective capacity. However, the black box approach is unaware of
where bottleneck lies and continues to add servers to the first two tiers until
it has used up all available servers. The response time continues to degrade
despite this capacity addition as the Java servlets spend increasingly larger
amounts of time waiting for queries to be returned by the overloaded database
(see Figures 10(c) and (d)).

We repeat this experiment using our multi-tier provisioning technique. Our
results are shown in Figure 11. As shown in Figure 11(b), the control plane
adds servers to the application at t = 390 seconds in response to the increased
workload. However, beyond this point, no additional capacity is allocated. Our
technique correctly identifies that the capacity of the database tier for this work-
load is around 600 simultaneous sessions. Consequently, when this capacity is
reached and the database saturates, it triggers policing instead of provisioning.
The admission control is triggered at t = 1070 seconds and drops any sessions
in excess of this limit during the remainder of the experiment. Figure 11(d)
shows that our provisioning is able to maintain a satisfactory response time
throughout the experiment.

Result: Our provisioning technique is able to take constraints imposed by
nonreplicable tiers into account. It can maintain response-time targets by in-
voking the admission control when capacity addition does not help.
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Fig. 10. Rubis: Black box provisioning.

8.3 The Need for Both Reactive and Predictive Provisioning

In this section, we first evaluate the agile server switching mechanism based
on the use of VMMs. Following this we present experiments to demonstrate the
need to have both predictive and reactive provisioning mechanisms.

We used Rubis in these experiments. The workload was generated based
on the Web traces from the 1998 Soccer World Cup site [Arlitt and Jin 1999].
These traces contained the number of arrivals per minute to this Web site over
an 8-day period. Based on these we created several smaller traces to drive our
experiments. These traces were obtained by compressing the original 24-hour
long traces to 1 hour—this was done by picking arrivals for every 24th minute
and discarding the rest. This enables us to capture the time-of-day effect as
a time-of-hour effect. Further, we reduced the workload intensity by reducing
the number of arrivals by a factor of 100. The experiment invoked predictive
provisioning once every 15 minutes over the one hour duration and we refer to
these periods as Intervals 1–4; reactive provisioning was invoked on-demand or
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Fig. 11. Model-based multitier provisioning.

once every few minutes. For the sake of convenience, in the rest of the section,
we will simply refer to these traces by the day from which they were constructed
(even though they are only 1-hour long). We present three of these traces: (1)
Figure 12(a) shows the workload for day 6 (a typical day), (2) Figure 13(a) shows
the workload for day 7, (moderate overload), and (3) Figure 15(a) shows the
workload for day 8 (extreme overload). Throughout this section, we will assume
that the database tier has sufficient capacity to handle the peak observed on
day 8 and does not become a bottleneck. The average session duration in our
trace was 5 minutes.

In the rest of this section, we first experimentally evaluate our predictive
and reactive provisioning mechanisms in isolation. Using the observations from
these experiments we make a case for integrating these two mechanisms for
effective handling of the workloads seen by Internet applications. We then ex-
perimentally evaluate the efficacy of this integrated provisioning approach.
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Fig. 12. Provisioning on day 6—typical day.

8.3.1 Only Predictive Provisioning. We first evaluate our predictive provi-
sioning mechanism. Figure 12 presents the performance of the system during
day 6 with the control plane employing only predictive provisioning (with re-
active provisioning disabled). Day 6 was a typical day, meaning the workload
closely resembled that observed during the previous days. The prediction algo-
rithm was successful in exploiting this and was able to assign sufficient capacity
to the application at all times. In Figure 12(b) we observe that the predicted
arrivals closely matched the actual arrivals. The control plane adds servers at
t = 30 minutes. This was well in time for the increased workload during the sec-
ond half of the experiment. The application experiences satisfactory response
time throughout the experiment (Figure 12(c)).

Result: Our predictive provisioning works well on typical days.

8.3.2 Only Reactive Provisioning. In Section 6.2 we discussed the potential
problems with a purely reactive provisioning mechanism. Our next experiment
demonstrates a shortcoming of such a provisioning approach.

In Figure 13 we present the results for day 7. Comparing this workload with
that on day 6, we find that the application experienced a moderate overload on
day 7, with the arrival rate going up to about 150 sessions/minute, more than
twice the peak on day 6. The workload showed a monotonically increasing trend
for the first 40 minutes.

We first let the control plane employ only predictive provisioning.
Figure 13(b) shows the performance of our prediction algorithm, both with and
without using recent trends, to correct the prediction. We find that the predic-
tion algorithm severely underestimated the number of arrivals in Interval 2.
The use of recent trends allowed it to progressively improve its estimate in
Intervals 3 and 4 (predicted arrivals were nearly 80% of the actual arrivals
in Interval 3 and almost equal in Interval 4). In Figure 13(c) we observe that
the response time target was violated in Interval 2 due to under-allocation of
servers.

Next, we repeat the experiment with the control plane, using only reactive
provisioning. Figure 13(d) presents the application performance. Consider In-
terval 2 first. We observe that, unlike predictive provisioning, the reactive mech-
anism was able to pull additional servers at t = 15 minutes in response to the
increased arrival rate, thus bringing down the response time within target.
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Fig. 13. Provisioning on day 7—moderate overload.

However, as the experiment progresses, the server allocation lags behind the
continuously increasing workload. Since reactive provisioning only responds to
very recent workload trends, it does not anticipate future requirements well
and takes multiple allocation steps to add sufficient capacity. Meanwhile, the
application experiences repeated violations of SLA during Intervals 2 and 3.

Additionally, as pointed out in Section 6, the presence of residual sessions
may increase the effective time to switch a server from one application to an-
other. Therefore, despite the use of VMM-based switching, there may be a con-
siderable delay before additional servers become available to an application
experiencing increased workload.

Finally, we present an experiment to illustrate another shortcoming of a
purely reactive provisioning scheme. We present the time needed to activate
a dormant replica in the application tier of Rubis under different degrees of
network utilization. The Tomcat replica was hosted in a VM with a 1GB mem-
ory allocation. The image for the VM was stored on an NFS server connected
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Fig. 14. Rubis: Time to activate a Tomcat replica under varying network traffic conditions.

by a 1 Gbps link and the VM was restored from a saved state. The background
network traffic was created by 6 machines sending iperf streams of UDP traffic
at a constant rate to the NFS server. For each level of traffic, we restored the
VM eight times and present the average of these in Figure 14. Comparing the
points with the least and the most network traffic, we observe the time to acti-
vate the replica went up by a factor of 20. Whereas, with a background traffic
of 600 Mbps, the replica was ready in only 39 seconds, with a traffic of 1 Gbps,
it took more than 11 minutes. It should be clear that a predictive mecha-
nism that can proactively determine the right occasions for conducting such
reactive provisioning can result in significant improvement in the agility of
provisioning, and thereby improve the performance provided to the application.

Result: We need reactive mechanisms to deal with large flash crowds. How-
ever, the actions taken by reactive provisioning may lag the workload. Fur-
thermore, the presence of residual sessions may render any benefits offered by
VMM-based switching futile. Therefore, reactive provisioning alone may not be
effective.

8.3.3 Integrated Provisioning and Policing. We used the workload on day 8
where the application experienced an extremely large overload (Figure 15(a)).
The peak workload on this day was an order of magnitude (about 20 times)
higher than on a typical day. Figure 15(b) shows how the prediction algorithm
performs during this overload. The algorithm fails to predict the sharp increase
in the workload during Interval 1. In Interval 2 it corrects its estimate based
on the observed workload during Interval 1. The workload increases drasti-
cally (reaching up to 1200 sessions/second) during Intervals 3 and 4, and the
algorithm fails to predict it.

In Figure 15(c) we show the performance of Rubis when the control plane
employs both predictive and reactive mechanisms and session policing is dis-
abled. In Interval 1, the reactive mechanism successfully adds additional
capacity (at t = 8 minutes) to lower the response time. It is invoked again
at t = 34 minutes (Observe that predictive provisioning is operating in concert
with reactive provisioning; it results in the server allocations at t = 15, 30, 45
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Fig. 15. Provisioning on day 8—extreme overload.

minutes). However, by this time (and for the remainder of the experiment) the
workload is simply too high to be serviced by the servers available. We impose
a resource limit of 13 servers for illustrative purposes. Beyond this, excess ses-
sions must be turned away to continue meeting the SLA for admitted sessions.
The lack of session policing causes response times to degrade during Intervals 3
and 4.

Next, we repeat this experiment with the session policing enabled. The per-
formance of Rubis is shown in Figure 15(d). The behavior of our provisioning
mechanisms is exactly as before. However, by turning away excess sessions, the
sentry is able to maintain the SLA throughout.

Result: Predictive and reactive mechanisms, and policing, are all integral
components of an effective provisioning technique. Our data center integrates
all of these, enabling it to handle diverse workloads.
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Table IV. Performance of VM-Based Switching; “n/a”

Stands for “Not Applicable”

Scenario Switching Time r.t. During Switching

1 10 ± 1 sec n/a

2 0 n/a

3 17 ± 2 min n/a

4 < 1 sec 2400 ± 200

5 < 1 sec 950 ± 100

8.4 VM-Based Switching of Server Resources

We present measurements on our testbed to demonstrate the benefits that our
VM-based switching can provide. We switch a server from a Tomcat capsule
of Rubis to a Tomcat capsule of Rubbos. We compare five different ways of
switching a server to illustrate the salient features of our scheme:

Scenario 1: New server taken from the free pool of servers; capsule and
nucleus have to be started on the server.

Scenario 2: New server taken from the free pool of servers; capsule already
running on a VM.

Scenario 3: New server taken from another application with residual ses-
sions; we wait for all residual sessions to finish.

Scenario 4: New server taken from another application with residual ses-
sions; we let the two VMs share the CPU equally while the residual sessions
still exist.

Scenario 5: New server taken from another application with residual ses-
sions; we change the CPU shares of the involved VMs using the fixed rate
ramp-down strategy of Section 6.

Table IV presents the switching time and performance of residual sessions
of Rubis in each of these scenarios. Comparing scenarios 2 and 3, we find that
in our VM-based scheme, the time to switch a server is solely dependent on
the residual sessions—the residual sessions of Rubis took about 17 minutes to
finish, resulting in the large switching time in scenario 3. Scenarios 4 and 5
show that by letting the two VMs coexist while the residual sessions finish, we
can eliminate this switching time. However, it is essential to continue providing
sufficient capacity to the residual sessions during the switching period to ensure
good performance—in scenario 4, new Rubbos sessions deprived the residual
sessions of Rubis of the capacity they needed, thus degrading their response
time.

Result: Use of virtual machines can enable agile switching of servers. Our
adaptive techniques reduce the delays in switching caused by residual sessions.

8.5 System Overheads

Two sources of overhead in the proposed system are the virtual machines that
run on the Elf nodes and the nuclei that run on all nodes. Measurements on
our prototype indicate that the CPU overhead and network traffic caused by
the nuclei are negligible. The control plane runs on a dedicated node and its
scalability is not a cause of concern. We chose the Xen VMM to implement
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our switching scheme since the performance of Xen/Linux has been shown to
be consistently close to native Linux [Barham et al. 2003]. Further, Xen has
been shown to provide good performance isolation when running multiple VMs
simultaneously, and is capable of scaling to 128 concurrent VMs.

9. RELATED WORK

Previous literature on issues related to managing resources in platforms host-
ing Internet services spans several areas. In this section we describe the im-
portant pieces of work on these topics.

Dynamic provisioning and managing resources in clusters: The work on dy-
namic provisioning of a platform’s resources may be classified into two cate-
gories. Some papers have addressed the problem of provisioning resources at
the granularity of individual servers, as in our work. Ranjan et al. [2002] con-
sider the problem of dynamically varying the number of servers assigned to a
single service hosted on a data center. Their objective is to minimize the num-
ber of servers needed to meet the service’s QoS targets. The algorithm is based
on a simple scheme to extrapolate the current size of the server-set, based on
observations of utilization levels and workloads to determine the server-set
of the right size, and is evaluated via simulations. The Oceano project at IBM
[Appleby et al. 2001] has developed a server farm in which servers can be moved
dynamically across hosted applications depending on their changing needs. The
main focus of this paper was on the implementation issues involved in building
such a platform rather than the exact algorithms for provisioning.

Other papers have considered the provisioning of resources at finer granu-
larity of resources. Muse [Chase and Doyle 2001] presents an architecture for
resource management in a hosting center. Muse employs an economic model
for dynamic provisioning of resources to multiple applications. In the model,
each application has a utility function that is a function of its throughput and
reflects the revenue generated by the application. There is also a penalty that
the application charges the system when its goals are not met. The system
computes resource allocations by attempting to maximize the overall profit.
Cluster Reserves [Aron et al. 2000] investigated resource allocation in server
clusters. The work assumes a large application running on a cluster, where
the aim is to provide differentiated service to clients based on some notion of
service class. This is achieved by making the OS schedulers provide fixed re-
source shares to applications spanning multiple nodes. The Cluster-On Demand
(COD) [Chase et al. 2003] work presents an automated framework to manage
resources in a shared hosting platform. COD introduces the notion of a virtual
cluster, which is a functionally isolated group of hosts within a shared hardware
base. A key element of COD is a protocol to resize virtual clusters dynamically
in cooperation with pluggable middleware components. Chandra et al. [2003]
model a server resource that services multiple applications as a GPS system
and presents online workload prediction and optimization-based techniques
for dynamic resource allocation. Some of the coauthors address the problem of
providing resource guarantees to distributed applications running on a shared
hosting platform [Urgaonkar and Shenoy 2004b]. In another paper, some of
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the coauthors propose a resource overbooking based scheme for maximizing
revenue in a shared platform [Urgaonkar et al. 2002].

An alternate approach for improving performance of overloaded Web servers
is based on redesigning the scheduling policy employed by the servers.
Schroeder and Harchol-Balter [2003] propose employing the SRPT algorithm
based on scheduling the connection with the shortest remaining time, and
demonstrate that it leads to improved average response time. While schedul-
ing can improve response times, under extreme overloads admission control,
and the ability to add extra capacity are indispensable. Better scheduling algo-
rithms are complementary to our solutions for handling overloads.

Modeling of Internet Applications: Modeling of single-tier Internet applica-
tions, of which HTTP servers are the most common example, has been studied
extensively. A queuing model of a Web server serving static content was pro-
posed in Slothouber [1996]. The model employs a network of four queues—two
modeling the Web server itself, and the other two modeling the Internet com-
munication network. A queuing model for performance prediction of single-tier
Web servers with static content was proposed in Doyle et al. [2003]. This ap-
proach, (1) explicitly models CPU, memory, and disk bandwidth, in the Web
server, (2) utilizes knowledge of file size and popularity distributions, and (3) re-
lates average response time to available resources. A GPS-based queuing model
of a single resource, such as the CPU, at a Web server was proposed in Chandra
et al. [2003]. The model is parameterized by online measurements and is used to
determine the resource allocation needed to meet desired average response time
targets. A G/G/1 queuing model for replicated single-tier applications (e.g., clus-
tered Web servers) was proposed in Urgaonkar and Shenoy [2004a]. The archi-
tecture and prototype implementation of a performance management system
for cluster-based Web services was proposed in Levy et al. [2003]. The work
employs an M/M/1 queuing model to compute responses times of Web requests.
A model of a Web server for the purpose of performance control using classical
feedback control theory was studied in Abdelzaher et al. [2002]; an implemen-
tation and evaluation using the Apache Web server was also presented in the
work. A combination of a Markov chain model and a queuing network model to
capture the operation of a Web server was presented in Menasce [2003]—the
former model represents the software architecture employed by the Web server
(e.g., process-based versus thread-based) while the latter computes the Web
server’s throughput.

Since these efforts focus primarily on single-tier Web servers, they are not
directly applicable to applications employing multiple tiers, or to components
such as Java enterprise servers or database servers employed by multitier ap-
plications. Further, many of these efforts assume static Web content, while
multi-tier applications, by their very nature, serve dynamic Web content.

A few recent efforts have focused on the modeling of multi-tier applications.
However, many of these either make simplifying assumptions or are based on
simple extensions of single-tier models. A number of papers have taken the ap-
proach of modeling only the most constrained or the most bottlenecked tier of
the application. For instance, Villela et al. [2004] considers the problem of pro-
visioning servers for only the Java application tier; it uses an M/G/1/PS model
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for each server in this tier. Similarly, the Java application tier of an e-commerce
application with N servers is modeled as a G/G/N queuing system in Ranjan
et al. [2002]. Other efforts have modeled the entire multi-tier application using
a single queue—an example is Kamra et al. [2004], which uses an M/GI/1/PS
model for an e-commerce application. While these approaches are useful for
specific scenarios, they have many limitations. For instance, modeling only a
single bottlenecked tier of a multi-tier application will fail to capture caching
effects at other tiers. Such a model cannot be used for capacity provisioning of
other tiers. Finally, as we show in our experiments, system bottlenecks can shift
from one tier to another with changes in workload characteristics. Under these
scenarios, there is no single tier that is the most constrained. In this article,
we present a model of a multitier application that overcomes these drawbacks.
Our model explicitly accounts for the presence of all tiers and also captures
application artifacts such as session-based workloads, tier replication, load im-
balances, caching effects, and concurrency limits.

Some researchers have developed sophisticated queueing models capable
of capturing the simultaneous resource demands and parallel subpaths that
occur within a tier of a multitier application. An important example of such
models is Layered Queueing Networks (LQN). LQNs are an adaptation of the
Extended Queueing Network, defined specifically to represent the fact that
software servers are executed on top of other layers of servers and processors,
giving complex combinations of simultaneous requests for resources [Rolia and
Sevcik 1995; Woodside and Raghunath 1995; Liu et al. 2001; Xu et al. 2006; and
Franks 1999]. The focus of most of these papers is on an Enterprise Java Beans
based application tier whereas the work reported in this article is concerned
with a model for an entire multitier application. While one possible approach
to modeling multi-tier applications could be based on the use of these exist-
ing per-tier models as building blocks, we do not pursue that direction in this
article.

The research efforts on modeling of most interest to our work are papers
by Kounev and Buchmann [2003], Bennani and Menasce [2005], and a paper
by some of our co-authors Urgaonkar et al. [2005], all of which develop so-
phisticated queuing models based on networks of queues to capture multi-tier
applications. The authors employ an approximate mean-value analysis algo-
rithm to develop an online provisioning technique using this model. We be-
lieve that the simpler model used in the research reported in this article can
be replaced by these models to obtain more accurate predictive provisioning
decisions.

Work by Cohen et al. [2004] uses a probabilistic modeling approach
called Tree-Augmented Bayesian Networks (TANs) to identify combinations
of system-level metrics and threshold values that correlate with high-level
performance states—compliance with service-level agreements for average re-
sponse time—in a three-tier Web service under a variety of conditions. Ex-
periments based on real applications and workloads indicate that this model
is a suitable candidate for use in offline fault diagnosis and online perfor-
mance prediction. Whereas it would be a useful exercise to compare such a
learning-based modeling approach with our queuing-theory-based model, it is
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beyond the scope of this article. In the absence of such a comparative study and
given the widely different natures of these two modeling approaches, we do not
make any assertions about the pros and cons of our model over the TAN-based
model.

SLAs and Adaptive QoS Degradation: The WSLA project at IBM [WSLA
http://www.research.ibm.com/wsla] addresses service level management issues
and challenges in designing an unambiguous and clear specification of SLAs
that can be monitored by the service provider, customer, and even by a third
party. Abdelzaher and Bhatti [1999] propose dealing with dynamically changing
workloads by adapting delivered content to load conditions.

Admission Control for Internet Services: Many papers have developed over-
load management solutions based on doing admission control. Several admis-
sion controllers operate by controlling the rate of admission but without distin-
guishing requests based on their sizes. Voigt et al. [2001] present kernel-based
admission control mechanisms to protect web servers against overloads—SYN
policing controls the rate and burst at which new connections are accepted,
prioritized listen queue reorders the listen queue based on predefined connec-
tion priorities, HTTP header-based control enables rate policing based on URL
names. Welsh and Culler [2003] propose an overload management solution
for Internet services built using the SEDA architecture. A salient feature of
their solution is feedback-based admission controllers embedded into individ-
ual stages of the service. The admission controllers work by gradually increas-
ing admission rate when performance is satisfactory and decreasing it multi-
plicatively upon observing QoS violations. The QGuard system [Jamjoom et al.
2000] proposes an adaptive mechanism that exploits inbound rate controls to
fend off overload and provide QoS differentiation among traffic classes. The
determination of these rate limits, however, is not dynamic but is delegated
to the administrator. Iyer et al. [2000] propose a system based on two mecha-
nisms: using thresholds on the connection queue length to decide when to start
dropping new connection requests and sending feedback to the proxy during
overloads that would cause it to restrict the traffic being forwarded to the server.
However, they do not address how these thresholds may be determined online.
Cherkasova and Phaal [1999] propose an admission control scheme that works
at the granularity of sessions rather than individual requests, and evaluate it
using a simple simulation study. This was based on a simple model to char-
acterize sessions. The admission controller was based on rejecting all sessions
for a small duration if the server utilization exceeded a prespecified threshold,
and has some similarity to our approximate admission control, except we use
information about the sizes of requests in various classes to determine the drop
threshold.

Several efforts have proposed solutions based on analytical characterization
of the workloads of Internet services and modeling of the servers. Kanodia and
Knightly [2000] utilize a modeling technique called service envelops to devise
an admission control for Web services that attempts to set different response
time targets for multiple classes of requests. Li and Jamin [2000] present a
measurement-based admission control to distribute bandwidth across clients
of unequal requirements. A key distinguishing feature of their algorithm is the
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introduction of controlled amounts of delay in the processing of certain requests
during overloads, to ensure different classes of requests are receiving the appro-
priate share of the bandwidth. Knightly and Shroff [1999] describe and classify
a broad class of admission control algorithms and evaluate the accuracy of these
algorithms via experiments. They identify key aspects of admission control that
enable it to achieve high statistical multiplexing gains.

Two admission control algorithms have been proposed recently that utilize
measurements of request sizes to guide their decision making. Verma and
Ghosal [2003] propose a service-time-based admission control that uses pre-
dictions of arrivals and service times in the short-term future to admit a subset
of requests that would maximize the profit of the service provider. Elnikety
et al. [2004] present an admission control for multitier e-commerce sites that
externally observes execution costs of requests, distinguishing different request
types. Our measurement-based admission control is based on similar ideas, al-
though the techniques differ in the details.

10. CONCLUSIONS

In this article, we argued that dynamic provisioning of multi-tier Internet ap-
plications raises new challenges not addressed by prior work on provisioning
single-tier applications. We proposed a novel dynamic provisioning technique
for multitier Internet applications that employs (1) a flexible queuing model to
determine how much resources to allocate to each tier of the application, and
(2) a combination of predictive and reactive methods that determine when to
provision these resources, both at at large and small time scales. Our experi-
ments on a forty machine Xen/Linux-based hosting platform demonstrate the
responsiveness of our technique in handling dynamic workloads. In one sce-
nario where a flash crowd caused the workload of a three-tier application to
double, our technique was able to double the application capacity within five
minutes while maintaining response time targets. Our technique also reduced
the overhead of switching servers across applications from several minutes or
more, to less than a second, while meeting the performance targets of residual
sessions.
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